
Group Homomorphism for Digital Signature privacy control

 G → H

x(u+v) = x(v) + x(u)

Where is equal to means that it represents the same thing
which is trust of the elements as a group.

 is a function for a digital signature of data which
includes X a unique identifier as part of the data.

If x(u+v) is a valid DSA with X a unique identifier then

x(u)+x(v) is a valid DSA each having X and are
equivalent in trust as belong to the same group.

Lets take an example of elements in two different groups
Jane and Kris that should not share elements for trust.

Jane has two elements that define a group A which is a
photo p and over21 o.

 is a function for a digital signature of data. Then
(p+o) is a valid DSA from a Certificate Authority indicating
this is a trusted group A all elements belong to each other.

Kris has two elements that define a group B which is a photo
r and under21 u.

(r+u) is a valid DSA from a Certificate Authority indicating
this is a trusted group B all elements belong to each other.

If the Certificate Authority creates a DSA for each element in
Jane

(p) + (o) the information can be trusted but the
membership as a group cannot. If the Certificate Authority
(CA) creates a DSA for each element in Kris

(r) + (u) the information can be trusted it came from
the CA but the membership as a group cannot. The elements
could be traded between Jane and Kris such as over21 and
now Kris has compromised trust as a group though the data
is trusted from a CA.

A Group Homomorphism for Digital Signature privacy control
can be created such that the elements can stand on their
own and knowledge of what group they belong to can be
asserted.

 G → H

x(u+v) = x(v) + x(u)

This is an important privacy control function for Identity.
Identity contains many fields of information such as Photo,
name, over21 and address. If you simply need to prove
Photo and over21 there is no need to give your private
home address out to strangers. For the case of Jane and
Kris
Jane

j(p+o) = j(p) + j(o)

Kris

k(r+u) = k(r) + k(u)

Kris cannot trade an element of identity with Jane. This is not
a valid DSA for a group

 k(r+u) ≠ k(r) + j(o)
Kris cannot compromise his identity for age trading with Jane.

Lets show how this is done.

Jane has two privacy elements that define a group G which
is a photo p and over21 o.

j is a function for a digital signature of data that will
include j a unique identifier to Jane when creating a valid
DSA for data.

Then j (p+o) is a valid DSA from a Certificate Authority
indicating this is a trusted group G all elements belong to
each other.

A Group Homomorphism can be created for trust of the

group using j a function for a digital signature of data
that will include j a unique identifier such as the following.

 G → H

j(p+o) = j(p) + j(o)

The privacy elements j(p) can be trusted since it is a

DSA and can be validated for its origin. The j(o) can be
trusted also since it is a DSA and can be validated for its
origin. The elements can be proven that they belong to each

as a group since the DSA derived from j uses the same
unique identifier.

Kris has two elements that define a group H which is a photo
r and under21 u.

For Kris k is a function for a digital signature of data that
will include k a unique identifier to Kris when creating a valid
DSA for data.

Then k (r+u) is a valid DSA from a Certificate Authority
indicating this is a trusted group H all elements belong to
each other.

The privacy elements k (r) can be trusted since it is a

DSA and can be validated for its origin. The j(u) can be
trusted also since it is a DSA and can be validated for its
origin. The elements can be proven that they belong to each

as a group H since the DSA derived from k uses the
same unique identifier.

Kris cannot trade an element of identity with Jane. This is not
a valid DSA for a group since the unique Ids would be
different.

 k(r+u) ≠ k(r) + j(o)

In group theory, the most important functions between two
groups are those that “preserve” the group operations, and
they are called homomorphisms. A function f : G → H
between two groups is a homomorphism when
 f(xy) = f(x)f(y) for all x and y in G

Here the multiplication in xy is in G and the multiplication in
f(x)f(y) is in H, so a homomorphism from G to H is a function
that transforms the operation in G to the operation in H.

Example homomorphisms are shown below:
 ex+y = ex ey
 loga(xy) = loga(x) + loga(y)

The log function Homomorphism shows an excellent example
of binary operation of multiplication can translate to a binary
operation of addition for a function.

Group Theory
In general a Homomorphism is the function operating on the composition of u and v gives us the same
answer as the composition of that function operating on u and composition of that function operating
on v. We get the same results which in our case is defined as the trust of a group.

Some youtube videos

http://www.youtube.com/watch?v=dcM_AX82xIw

http://www.youtube.com/watch?v=IBBFHeKFuJM

Richard Redpath

